

JAVIER DUARTE (UCSD)
SNOWMASS EF02
HIGGS+FLAVOR MEETING
SEPTEMBER 3, 2020

JET FLAVOR TAGGING FOR HIGGS PHYSICS

- Introduction
- Overview of flavor tagging
- Recent developments (ML)
- Use in analysis
- Experimental considerations
- Use in the trigger
- Summary and outlook

Note: Apologies for CMS-centric details

INTRODUCTION

- Heavy flavor jet tagging is an important aspect of Higgs searches
 - Techniques have been "ML"-based for a while [arXiv:1607.08633]
 - e.g. in NN taggers in LEP [arXiv:hep-ex/0311003], D0 [arXiv:1002.4224], MV1 at ATLAS [arXiv:1512.01094] in ATLAS and cMVA, CSVv2 in CMS [arXiv:1712.07158]
- Recently played a role in the observation of VH(bb)
- Techniques are still evolving
- 2nd generation (charm)more challenging

H decay	BF
bb	58.2%
CC	2.9%

b jet PV jet

anti- k_T R=0.4

Handles:

anti-k_T R=0.4

Handles:

secondary vertices

anti- k_T R=0.4

Handles:

secondary vertices

displaced tracks

anti-k_T

R = 0.4

Handles:

secondary vertices

displaced tracks

large impact parameters

anti-k_T

R = 0.4

Handles:

secondary vertices

displaced tracks

large impact parameters

soft leptons

anti-k_T

R = 0.4

HIGGS (DOUBLE-B) TAGGING

Handles:

secondary vertices

displaced tracks

large impact parameters

soft leptons

- Additional handles:
 - Relative position of SVs

DeepJet [dlps_2017_10, CMS-DP-2018-058] considers low-level charged and neutral particle, secondary vertex, and global features to categorize the flavor of AK4 jets using a mixture of recurrent and dense neural networks

- Large improvement over previous methods:
 - DeepJet: 84% b-jet efficiency for 1% mis-id
 - DeepCSV: 75% b-jet efficiency

DEEP DOUBLE-X, DEEP AK8 TAGGERS

- Deep double-x and deep AK8 in CMS: similar approach using low-level features now applied to large-radius jets
 - \triangleright 50-70% H(bb) efficiency for 1% mis-id (depending on m_{SD}, p_T range)
- Related: Higgs jet tagger in ATLAS [arXiv:1906.11005]

USE IN PHYSICS ANALYSIS

- New tagging (deep AK8 and deep double-b) methods used in CMS VH(cc) and ggH(bb) searches
 - These searches made possible because of these methods!

- Graph neural networks for jet tagging:
 - Each jet is treated as a graph of connected nodes (particles)

- Graph neural networks for jet tagging:
 - Each jet is treated as a graph of connected nodes (particles)
 - NN learns to update node features from relationships between pairs of nodes

- Graph neural networks for jet tagging:
 - Each jet is treated as a graph of connected nodes (particles)
 - NN learns to update node features from relationships between pairs of nodes
 - Graph-level outputs are obtained by summing over node-level features

- Graph neural networks for jet tagging:
 - Each jet is treated as a graph of connected nodes (particles)
 - NN learns to update node features from relationships between pairs of nodes
 - Graph-level outputs are obtained by summing over node-level features
- Examples:
 - ParticleNet [<u>arXiv:1902.08570</u>], based on DGCNN [<u>arXiv:1801.07829</u>]
 - JEDI-Net/HiggsInteractionNet
 [arXiv:1908.05318, arXiv:1909.12285],
 based on IN [arXiv:1612.00222, arXiv:1806.01261
 - ▶ ABCNet [arXiv:2001.05311], see talk by Vinicius
 - ► Energy Flow Networks [<u>arXiv:1810.05165</u>]

EXPERIMENTAL AND ANALYSIS CONSIDERATIONS

- Data/simulation correction scale factors
 - ▶ Often measured using "proxy" processes like g→bb
 - ▶ Difficult if tagger can tell g→bb and H→bb apart
 - ▶ Using Z→bb is starting to become common
 - What about cc?
 - Same concepts, but smaller rates make measurement more difficult
 - Use ML to minimize data/simulation differences [arXiv:1912.12238]
- Estimate uncertainties/resolution directly [arXiv:1912.06046]
- Decorrelation with analysis variables
 - Often want to prevent algorithm from learning aspects unconnected from the flavor element that you may use in the analysis (e.g. p_T , mass, etc.)
 - ▶ Solutions explored so far: adversarial neural networks [arXiv:1611.01046, arXiv:1409.7495], "brute force" designed decorrelated taggers (DDT) [arXiv:1603.00027], loss function penalty, training samples with varying mass and p_T

FLAVOR TAGGING IN THE TRIGGER

- High-level trigger
 - b-tagging algorithms available using re-optimized tracking and fast primary vertex finding

- May need ways to speed up large ML algorithms (dedicated re-training may improve perf. as well)
- Using GPUs can help (e.g. Allen in LHCb, Patatrack [arXiv:2008.13461] and SONIC in CMS [arXiv:2007.10359])
- Level-1 trigger
 - ML algorithms in FPGA firmware may be enabled with tools like hls4ml
 [arXiv:1804.06913]
 - In CMS only outer tracker will be available

SUMMARY AND OUTLOOK

- Heavy flavor tagging is a crucial tool for Higgs physics
- Methods have improved dramatically in recent years (and may continue to improve a bit)
 - At the same time, new issues (analysis-related, experimental, and computational) to consider
- Outlook is bright

JAVIER DUARTE (UCSD)
SNOWMASS EF02
HIGGS+FLAVOR MEETING
SEPTEMBER 3, 2020

BACKUB